809. Molecular Polarisability: Molar Kerr Constants, Apparent Dipole Moments, and Conformations of Trialkyl Borates as Solutes.

By M. ARONEY, R. J. W. LE FÈVRE, and P. M. LENTHEN.

Twelve trialkyl borates as solutes in carbon tetrachloride show properties consistent with conformations in which the BO₃ unit is a triangular plane with the O-C bonds so rotated that each is at ca. 74° to a direction normal to this plane. During step-wise ascent of the series $B(OC_nH_{2n+1})_3$ each added C-C link appears to make semi-tetrahedral angles with the principal polarisability directions of the molecule being increased.

A REVIEW ¹ of the physical properties of trialkyl borates, $B(OR)_3$, included the facts that Raman and infrared spectra indicate C_{3h} symmetry, and that electron diffraction measurements show the BO₃ nucleus to be planar, as it appears, from Cowley's X-ray study,²

- ¹ Lappert, Chem. Rev., 1956, **56**, 959. ² Cowley, Acta Cryst., 1953, **6**, 522.

to be in boric acid. At least seven borates ³ have dipole moments of ca. 0.8 D. Smyth ⁴ notes that such polarity arises from the distribution of the R-O vectors about the B-O bond directions, although ^{3c} it is too small to be explained by "free rotations" of the bent B-O-R units, steric repulsions among the alkyl groups evidently reducing the stabilities of the high-moment configurations (ref. 4, p. 373). The implication here is that each borate is a mixture of individual conformational isomers manifesting normal orientation polarisations. However, in the light of Coop and Sutton's work,⁵ a moment of 0.8 D could also be ascribed to vibration polarisation, owing to the restricted movements (librations) of the alkyl groups within limits above and below the BO₃ plane.

It is difficult to decide between these alternatives. Present measurements were begun to ascertain the algebraic signs of the molar Kerr constants of a number of borates because of the chance that these might be negative, in which eventuality (for reasons given in ref. 6, p. 294) the existence of permanent resultant moments would be established. Unfortunately, in the outcome, all $_{\infty}(_{m}K_{2})$'s have proved positive; nevertheless their magnitudes provide some useful evidence not hitherto available.

EXPERIMENTAL

Nine alkyl borates have been studied in carbon tetrachloride as solvent, previously described procedures for the measurement of dielectric constant, electric birefringence, etc., being followed.^{6,7} Methyl borate was prepared by the method of Schlesinger et al.,⁸ the others were commercial specimens redistilled immediately before the solutions were made up. Symbols, methods of calculation, and headings used in the following Tables are explained in ref. 6, pp. 280-283. The various constants adopted for carbon tetrachloride at 25° are:

In no case was a change in the Kerr constant of the solvent detected on dissolution of the borate up to weight fractions of 20%; the coefficient δ is therefore zero throughout.

The results are tabulated.

DISCUSSION

The dipole moments and refractivity data of Table 2 are in general accord with previous determinations, where these exist ^{1,3,9} Table 3 shows that trialkyl borate molecules are only slightly anisotropically polarisable. Estimates of the unknown longitudinal polarisability, $b_{\rm L}^{\rm BO}$, of the B-O bond are 0.055×10^{-23} (by Le Fèvre's 1958 equation ¹⁰) or 0.053×10^{-23} (by the 1959 equation ¹⁰); for both, the B–O intercentre distance ¹¹ of 1.38 Å is used. Becher¹¹ recognises a B-O valency vibration in the infrared spectrum at 1360 cm.⁻¹ and another in the Raman spectrum at 727 cm.⁻¹, the latter line being polarised. With v = 1360 cm.⁻¹, $b_{\rm L}^{\rm BO}$ emerges as $0.23_5 \times 10^{-23}$, which is impossibly great since $b_{\rm L}^{\rm BO} + b_{\rm T}^{\rm BO} + b_{\rm Y}^{\rm BO}$ is only $0.196_6 \times 10^{-23}$ if $R_{\rm D}$ for the B-O link is 1.74 c.c. as stated by Gillis.⁹ Accordingly, assuming that $b_{\rm T}^{\rm BO} = b_{\rm V}^{\rm BO}$, we have:

$$10^{23}b_{\rm L}^{\rm BO} = 0.053, 10^{23}b_{\rm T}^{\rm BO} = 10^{23}b_{\rm V}^{\rm BO} = 0.072$$

These values, in conjunction with $10^{23}b_{\rm L}^{C-0} = 0.081$, $10^{23}(b_{\rm T}^{C-0} = b_{\rm V}^{C-0}) = 0.039$, and

(a) Cowley and Partington, Nature, 1935, 136, 643; (b) Otto, J. Amer. Chem. Soc., 1935, 57, 1476;
 (c) Lewis and Smyth, J. Amer. Chem. Soc., 1940, 62, 1529.
 ⁴ Smyth, "Dielectric Behaviour and Structure," McGraw-Hill, New York, 1955, p. 379.

Smyth, Delectric Benaviour and Structure, McGraw-Tim, New York, 1955, p. 575.
⁵ Coop and Sutton, J., 1938, 1269.
⁶ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
⁷ Le Fèvre and Le Fèvre, J., 1953, 4041; 1954, 1577.
⁸ Schlesinger, Brown, Mayfield, and Gilbreath, J. Amer. Chem. Soc., 1953, 75, 213.
⁹ Gillis, "Bond Refractions of Single Covalencies," Tech. Note 51, Defence Standards Laboratories, Maribyrnong, Vic., Australia; Rev. Pure Appl. Chem., 1960, 10, 21.
¹⁰ Le Fèvre, Proc. Chem. Soc., 1958, 283; 1959, 363.
¹¹ Becher Z. abus, Chem. (Frankfurt), 1954, 2, 276.

¹¹ Becher, Z. phys. Chem. (Frankfurt), 1954, 2, 276.

Table 1.	Densities,	dielectric	constants,	and	refractions,	for	solutions	of	borates in	n
		carbo	n tetrachlo	ride	at 25°.					

$10^{6}w_{2}$	d_{12}	ε_{12}	n_{12}	$10^{6}w_{2}$	d_{12}	ε_{12}	n_{12}
	Trimethy	yl borate			Tri-isopro	Þvl borate	
12,959	1.56975	2.2384	1.4557	15.351	1.56473	2.2306	1.4558
17.643	1.56526	2.2380	1.4542	27,728	1.54826	$2 \cdot 2346$	1.4543
29,697	1.55265	$2 \cdot 2407$	1.4522	35,135	1.53817	$2 \cdot 2359$	1.4535
42,407	1.53855	2.2487	1.4501	43,474	1.52734	$2 \cdot 2366$	1.4525
53,122	1.52573	$2 \cdot 2543$	1.4480	53,846	1.51342	$2 \cdot 2381$	1.4514
64,780	1.51486	$2 \cdot 2612$	1.4460	66,559	1.51342	$2 \cdot 2404$	1.4501
74,635	1.50197	$2 \cdot 2664$	1.4443	79,731	1.47938	$2 \cdot 2446$	1.4486
89,931	1.48733	$2 \cdot 2721$	1.4420	90,483	1.46322	2.2453	1.4474
	Tri-isobu	tyl borate			Tripenty	l borate	
11,986	1.56862	2.2286	1.4564	22.423	1.55276	$2 \cdot 2302$	1.4562
21,689	1.55603	$2 \cdot 2293$	1.4555	32,687	1.53782	$2 \cdot 2311$	1.4555
34,294	1.53937	$2 \cdot 2313$	1.4544	42,803	1.52386	$2 \cdot 2330$	1.4547
49,266	1.51972	$2 \cdot 2347$	1.4529	56,031	1.50471	$2 \cdot 2341$	1.4539
61,136	1.50385	2.2368	1.4519	69,124	1.48613	$2 \cdot 2373$	1.4532
76,473	1.48301	$2 \cdot 2379$	1.4505	82,209	1.46791	$2 \cdot 2369$	1.4524
97,348	1.45519	$2 \cdot 2412$	1.4486	95,760	1.44833	$2 \cdot 2369$	1.4515
118,273	$1 \cdot 42822$	$2 \cdot 2457$	1.4482				
	Trihexy	l borate			Triocty	l borate	
18,642	1·5590 3	$2 \cdot 2280$	1.4565	14,529	1.56362	2.2278	1.4567
28,731	1.54577	$2 \cdot 2305$	1.4560	23,188	1.55123	$2 \cdot 2286$	1.4564
41,256	1.52810	$2 \cdot 2313$	1.4554	38,410	1.52937	$2 \cdot 2306$	1.4556
55,77 3	1.50926	$2 \cdot 2332$	1.4545	53,862	1.50766	$2 \cdot 2313$	1.4549
66,821	$1 \cdot 49233$	$2 \cdot 2362$	1.4540	77,107	1.47208	$2 \cdot 2342$	1.4538
81,038	1.47413	$2 \cdot 2362$	1.4532	86,051	1.46088	$2 \cdot 2345$	1.4534
				100,468	1.44102	$2 \cdot 2364$	1.4526
	Trinony	l borate					
10,123	1.56983	2.2282	1.4570	$10^{6}w_{2}$	n_{12}	$10^{6}w_{2}$	n_{12}
28,658	1.54367	2.2288	1.4554	Tri-n-pro	øvl borate	Tri-n-bu	tyl borate
41,310	1.52536	2.2290	1.4560	14 042	1.4559	15 632	1.4556
52,341	1.50937	2.2303	1.4555	28,002	1.4542	28 735	1.4545
70,036	1.48418	2.2310	1.4549	36,468	1.4532	41 156	1.4535
83,710 09 195	1.40441	2.2310	1.4544	61,178	1.4502	54.022	1.4521
98,120	1.44385	2.2310	1.4539	01,110	1 100-	01,014	1 1041
109,234	1.42590	2.2331	1.4939				

 TABLE 2. Polarisations at infinite dilution, molecular refractions, and apparent dipole moments.*

Borate	αε,	<i>—</i> β	$-\gamma$	∞P_2 (c.c.)	$R_{\mathbf{D}}$ (c.c.)	μ(D)
Trimethyl	0.52	0.689	0.120	37.8.	24.1	0.8
Triethyl	(0.38)	(0.706)	(0.092)	50·3ຶ	36.6	0.7
Tri-n-propyl	(0.23)	(0 ∙837)	`0·080́	65·0°	52.7°	0.7
Tri-isopropyl	`0·22 [´]	`0·8 34 ′	0.067	67.5	52.4	0.8
Tri-n-butyl	(0.16)	(0·843)	0.069	78.7.	66·3.	0.7
Tri-isobutyl	`0·15́	`0·834 [′]	0.060	80.9.	65·9°	0.7
Tri-s-butyl	(0.15)	(0.843)	(0.058)	78.8	66.4	0.8
Tripentvl	0.13	0.897	0.044	94.7	80.3.	0.8
Tri-isopentyl	(0.12)	(0.894)	(0.045)	94·3	80.2	0.8
Trihexyl	`0·10 [´]	`0·861 [′]	`0·0 4 0 [′]	110·5 [°]	95·2	0.8
Trioctvl	0.09	0.907	0.032	139.4	$121 \cdot 2^{\circ}$	0.9,
Trinonyl	0.06	0.905	0.025	156.5_{5}	1 3 9·0	0.9

* Data in parentheses were calculated from ε , d, and n_D measurements given in ref. 3.

 $b_{\rm L}^{\rm CH}=b_{\rm T}^{\rm CH}=b_{\rm V}^{\rm CH}=0.064\times10^{-23}$ c.c. (see refs. 6 and 12), may now be applied to trimethyl borate.

For this ester we have $R_D = 24 \cdot 11$ (Table 2), whence an estimate of $b_1 + 2b_3$ is $2 \cdot 72_4 \times 10^{-23}$ c.c. For the flat arrangement of B(OMe)₃, b_1 is the sum of the "vertical"

¹² Le Fèvre and Le Fèvre, *J.*, 1956, 3549.

polarisabilities of the bonds involved, *i.e.*, $b_1 = 0.909 \times 10^{-23}$ c.c., so that $b_2 = b_3 = 0.907 \times 10^{-23}$ c.c. These differ somewhat from either of the sets shown in Table 3. If each of the C-O bonds is inclined at an angle θ to a line perpendicular to the OOO triangle and passing through the boron atom, we have: $0.919 = 3b_V^{\rm BO} + 9b_V^{\rm CH} + 3(b_L^{\rm 0-O}\cos^2\theta + b_T^{\rm 0-O}\sin^2\theta)$, whence θ is *ca*. 74°, *i.e.*, the three O-C bonds are disposed towards the defined

 TABLE 3. Molar Kerr constants at infinite dilution in carbon tetrachloride at 25°, and principal polarisabilities derived therefrom.

Borate	$_{\infty}(_{ m m}K_{2}) imes 10^{12}$	$(heta_1 + heta_2) imes 10^{35}$	$10^{23}b_1*$	$10^{23}b_2 * = b_3 *$	$10^{23}b_1$ †	$10^{23}b_2^{\dagger} = b_3^{\dagger}$
Trimethyl	1.2.,	0.2902	0.919	0.903	0·99 3	0.866
Triethyl	1.7	0.4233	1.398	1.370	1.489	1.324
Tri-n-propyl	$2 \cdot 5_5$	0.6065	2.011	1.973	2.124	1.916
Tri-isopropyl	$2 \cdot 5_{4}$	0.6041	1.996	1.965	$2 \cdot 111$	1.908
Tri-n-butyl	$3 \cdot 1_{7}$	0.7539	2.529	2.482	2.655	2.419
Tri-isobutyl	3.15	0.7492	2.516	2.469	2.639	$2 \cdot 407$
Tri-s-butyl	3.1	0.7515	2.528	2.489	2.659	$2 \cdot 423$
Tri-n-pentyl	3.84	0.9133	3.057	3 .009	3·199	2.938
Tri-isopentyl	3.8	0.9133	3.054	3.003	3·194	2.933
Trihexyl	4.3,	1.0393	3.621	3.569	3.774	3.493
Trioctyl	5.6,	1.3485	4.599	4.546	4.778	4.457
Trinonyl	6·2 ₈	1.4936	5.276	5.212	5.462	$5 \cdot 121$

* Calc. on assumption that resultant moments are as in Table 2; $_{\rm D}P/_{\rm E}P$ taken as 1·1, $_{\rm E}P$ as 0·95 $R_{\rm D}$. † Calc. on assumption that $\mu_{\rm resultant} = 0$, in which case $_{\rm D}P = _{\infty}P_2$.

line much as they would be towards a fourth bond if attached to a quadrivalent tetrahedral atom. The apparent moment may therefore be largely real, for if μ_{Me-O} is between 0.74 (ref. 4, p. 244) and 1.1 D (from ¹³ $\mu_{Me_{sO}} = 1.25$ D and the Me-O-Me angle = 110°), $\mu_{B(OMe)_{s}}$ should be between 0.61 and 0.91 D, to be compared with $\mu_{expt.} = 0.82$ D listed in Table 2.

Because of the allocation ¹¹ of C_{3h} symmetry to trimethyl borate, only forms of comparable symmetry have been fully investigated. Others can be eliminated on dipole moment grounds, or by their _mK's; *e.g.*, a structure in which one OMe link is above and two OMe links are below the BO₃ plane to the maximum extents would have a μ of the order found but its _mK calc. would be 10.8×10^{-12} , which is excessive.

A further point of interest from Table 3 is that, among the homologous normal esters, the differences per $3CH_2$ in b_1 and in $b_2 = b_3$ from one member to the next higher are roughly the same, lying about the mean value $0.54_2 \times 10^{-23}$; this is close to the increment of polarisability to be expected ($0.53_7 \times 10^{-23}$ c.c.) if, in passing from one homologue to the next, the new C-C links are always added in such a way that their longitudinal polarisability semi-axes make approximately semi-tetrahedral angles with the principal polarisability directions in the molecule of the lower homologue.

The authors acknowledge with gratitude a gift of specimens of trialkyl borates from Borax Consolidated Limited, of London, obtained by the kind offices of Messrs. Swift and Company Limited, of Sydney.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, January 26th, 1961.]

¹³ Barclay and Le Fèvre, J., 1952, 1643.