809. Molecular Polarisability: Molar Kerr Constants, Apparent Dipole Moments, and Conformations of Trialkyl Borates as Solutes.

By M. Aroney, R. J. W. Le Fèvre, and P. M. Lenthen.

Twelve trialkyl borates as solutes in carbon tetrachloride show properties consistent with conformations in which the BO_{3} unit is a triangular plane with the $\mathrm{O}-\mathrm{C}$ bonds so rotated that each is at $c a .74^{\circ}$ to a direction normal to this plane. During step-wise ascent of the series $\mathrm{B}\left(\mathrm{OC}_{n} \mathrm{H}_{2 n+1}\right)_{3}$ each added $\mathrm{C}-\mathrm{C}$ link appears to make semi-tetrahedral angles with the principal polarisability directions of the molecule being increased.

A Review ${ }^{1}$ of the physical properties of trialkyl borates, $\mathrm{B}(\mathrm{OR})_{3}$, included the facts that Raman and infrared spectra indicate $C_{3 h}$ symmetry, and that electron diffraction measurements show the BO_{3} nucleus to be planar, as it appears, from Cowley's X-ray study, ${ }^{2}$

[^0]${ }^{2}$ Cowley, Acta Cryst., 1953, 6, 522.
to be in boric acid. At least seven borates ${ }^{3}$ have dipole moments of $c a .0 .8 \mathrm{D}$. Smyth ${ }^{4}$ notes that such polarity arises from the distribution of the $\mathrm{R}-\mathrm{O}$ vectors about the $\mathrm{B}-\mathrm{O}$ bond directions, although ${ }^{3 c}$ it is too small to be explained by " free rotations" of the bent $\mathrm{B}-\mathrm{O}-\mathrm{R}$ units, steric repulsions among the alkyl groups evidently reducing the stabilities of the high-moment configurations (ref. 4, p. 373). The implication here is that each borate is a mixture of individual conformational isomers manifesting normal orientation polarisations. However, in the light of Coop and Sutton's work, ${ }^{5}$ a moment of 0.8 D could also be ascribed to vibration polarisation, owing to the restricted movements (librations) of the alkyl groups within limits above and below the BO_{3} plane.

It is difficult to decide between these alternatives. Present measurements were begun to ascertain the algebraic signs of the molar Kerr constants of a number of borates because of the chance that these might be negative, in which eventuality (for reasons given in ref. 6, p. 294) the existence of permanent resultant moments would be established. Unfortunately, in the outcome, all $\infty\left({ }_{m} K_{2}\right)$'s have proved positive; nevertheless their magnitudes provide some useful evidence not hitherto available.

Experimental

Nine alkyl borates have been studied in carbon tetrachloride as solvent, previously described procedures for the measurement of dielectric constant, electric birefringence, etc., being followed. ${ }^{6,7}$ Methyl borate was prepared by the method of Schlesinger et al., ${ }^{8}$ the others were commercial specimens redistilled immediately before the solutions were made up. Symbols, methods of calculation, and headings used in the following Tables are explained in ref. 6, pp. 280-283. The various constants adopted for carbon tetrachloride at 25° are:

$$
\begin{aligned}
\varepsilon_{1} & =2.2270 & \left(n_{\mathrm{D}}\right)_{1} & =1.4575 \\
d_{1} & =1.58454 & & H
\end{aligned}=2.060
$$

In no case was a change in the Kerr constant of the solvent detected on dissolution of the borate up to weight fractions of 20%; the coefficient δ is therefore zero throughout.

The results are tabulated.

Discussion

The dipole moments and refractivity data of Table 2 are in general accord with previous determinations, where these exist. ${ }^{1,3,9}$ Table 3 shows that trialkyl borate molecules are only slightly anisotropically polarisable. Estimates of the unknown longitudinal polarisability, $b_{\mathrm{L}}^{\mathrm{BO}}$, of the $\mathrm{B}-\mathrm{O}$ bond are 0.055×10^{-23} (by Le Fèvre's 1958 equation ${ }^{10}$) or 0.053×10^{-23} (by the 1959 equation ${ }^{10}$); for both, the $\mathrm{B}-\mathrm{O}$ intercentre distance ${ }^{11}$ of $1.38 \AA$ is used. Becher ${ }^{11}$ recognises a B-O valency vibration in the infrared spectrum at $1360 \mathrm{~cm} .^{-1}$ and another in the Raman spectrum at $727 \mathrm{~cm} .^{-1}$, the latter line being polarised. With $\nu=1360 \mathrm{~cm} .^{-1}$, $b_{\mathrm{L}}^{\mathrm{BO}}$ emerges as $0 \cdot 23_{5} \times 10^{-23}$, which is impossibly great since $b_{1}^{\mathrm{BO}}+b_{\mathrm{T}}^{\mathrm{BO}}+b_{\mathrm{V}}^{\mathrm{BO}}$. is only $0 \cdot 196_{6} \times 10^{-23}$ if R_{D} for the $\mathrm{B}-\mathrm{O}$ link is 1.74 c.c. as stated by Gillis. ${ }^{9}$ Accordingly, assuming that $b_{\mathrm{T}}^{\mathrm{BO}}=b_{\mathrm{V}}^{\mathrm{BO}}$, we have:

$$
10^{23} b_{\mathrm{L}}^{\mathrm{BO}}=0.053,10^{23} b_{\mathrm{T}}^{\mathrm{BO}}=10^{23} b_{\mathrm{V}}^{\mathrm{BO}}=0.072
$$

These values, in conjunction with $10^{23} b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}=0.081,10^{23}\left(b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{O}}\right)=0.039$, and
${ }^{3}$ (a) Cowley and Partington, Nature, 1935, 136, 643; (b) Otto, J. Amer. Chem. Soc., 1935, 57, 1476; (c) Lewis and Smyth, J. Amer. Chem. Soc., 1940, 62, 1529.
${ }^{4}$ Smyth, " Dielectric Behaviour and Structure," McGraw-Hill, New York, 1955, p. 379.
${ }^{5}$ Coop and Sutton, J., 1938, 1269.
${ }^{6}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
${ }^{7}$ Le Fèvre and Le Fèvre, $J ., 1953,4041 ; 1954,1577$.
${ }^{8}$ Schlesinger, Brown, Mayfield, and Gilbreath, J. Amer. Chem. Soc., 1953, 75, 213.
9 Gillis, "Bond Refractions of Single Covalencies," Tech. Note 51, Defence Standards Laboratories, Maribyrnong, Vic., Australia; Rev. Pure Appl. Chem., 1960, 10, 21.
${ }^{10}$ Le Fèvre, Proc. Chem. Soc., 1958, 283; 1959, 363.
${ }^{11}$ Becher, Z. phys. Chem. (Frankfurt), 1954, 2, 276.

Table 1. Densities, dielectric constants, and refractions, for solutions of borates in carbon tetrachloride at 25°.

$10^{6} w_{2}$	d_{12}	ε_{12}	n_{12}	$10^{6} w_{2}$	d_{12}	ε_{12}	n_{12}
	Trimethyl borate			Tri-isopropyl borate			
12,959	1.56975	$2 \cdot 2384$	1.4557	15,351	1.56473	$2 \cdot 2306$	1.4558
17,643	$1 \cdot 56526$	$2 \cdot 2380$	$1 \cdot 4542$	27,728	$1 \cdot 54826$	$2 \cdot 2346$	$1 \cdot 4543$
29,697	1.55265	$2 \cdot 2407$	$1 \cdot 4522$	35,135	1.53817	2.2359	1.4535
42,407	1.53855	$2 \cdot 2487$	1.4501	43,474	1.52734	$2 \cdot 2366$	1.4525
53,122	1.52573	$2 \cdot 2543$	1.4480	53,846	1.51342	$2 \cdot 2381$	1.4514
64,780	1.51486	$2 \cdot 2612$	$1 \cdot 4460$	66,559	1.51342	$2 \cdot 2404$	$1 \cdot 4501$
74,635	1.50197	$2 \cdot 2664$	$1 \cdot 4443$	79,731	1.47938	2.2446	$1 \cdot 4486$
89,931	1.48733	2.2721	$1 \cdot 4420$	90,483	1.46322	$2 \cdot 2453$	$1 \cdot 4474$
Tri-isobutyl borate				Tripentyl borate			
11,986	1.56862	$2 \cdot 2286$	1.4564	22,423	1.55276	$2 \cdot 2302$	1.4562
21,689	1.55603	$2 \cdot 2293$	$1 \cdot 4555$	32,687	1.53782	$2 \cdot 2311$	1.4555
34,294	1.53937	$2 \cdot 2313$	$1 \cdot 4544$	42,803	1.52386	$2 \cdot 2330$	1.4547
49,266	1.51972	$2 \cdot 2347$	1.4529	56,031	1.50471	$2 \cdot 2341$	$1 \cdot 4539$
61,136	1.50385	$2 \cdot 2368$	$1 \cdot 4519$	69,124	1.48613	$2 \cdot 2373$	$1 \cdot 4532$
76,473	$1 \cdot 48301$	$2 \cdot 2379$	1.4505	82,209	1.46791	$2 \cdot 2369$	1.4524
97,348	$1 \cdot 45519$	$2 \cdot 2412$	$1 \cdot 4486$	95,760	1.44833	$2 \cdot 2369$	$1 \cdot 4515$
118,273	1.42822	2.2457	1-4482				
Trihexyl borate				Trioctyl borate			
18,642	1.55903	$2 \cdot 2280$	1.4565	14,529	1.56362	$2 \cdot 2278$	1.4567
28,731	1.54577	$2 \cdot 2305$	$1 \cdot 4560$	23,188	$1 \cdot 55123$	$2 \cdot 2286$	$1 \cdot 4564$
41,256	1.52810	$2 \cdot 2313$	1.4554	38,410	1.52937	$2 \cdot 2306$	1.4556
55,773	1.50926	$2 \cdot 2332$	$1 \cdot 4545$	53,862	$1 \cdot 50766$	$2 \cdot 2313$	1.4549
66,821	1.49233	$2 \cdot 2362$	$1 \cdot 4540$	77,107	$1 \cdot 47208$	$2 \cdot 2342$	1.4538
81,038	1.47413	$2 \cdot 2362$	1-4532	86,051	1.46088	$2 \cdot 2345$	$1 \cdot 4534$
				100,468	1.44102	$2 \cdot 2364$	1.4526
Trinonyl borate 100468							
10,123	1.56983	$2 \cdot 2282$	1.4570	$10^{6} w_{2}$	n_{12}	$10^{6} w_{2}$	n_{12}
28,658	1.54367	$2 \cdot 2288$	1.4554	Tri-n-propyl borate		Tri-n-butyl borate	
41,310	1.52536	$2 \cdot 2290$	$1 \cdot 4560$				
52,341	1.50937	2.2303	$1 \cdot 4555$	14,042	1.4559	15,632	1.4556
70,036	1.48418	2.2310	1.4549	28,002 36,468	1.4542 1.4532	28,735 41,156	1.4545 1.4535
83,710	$1 \cdot 46441$	$2 \cdot 2316$	1.4544	$\mathbf{3 6 , 4 6 8}$ 61,178	1.4532 1.4502	41,156 $\mathbf{5 4 , 0 2 2}$	1.4535 1.4521
98,125 109,234	1.44385 1.42590	$2 \cdot 2316$ $\mathbf{2 . 2 3 3 1}$	1.4539 1.4535	61,178	$1 \cdot 4502$	54,022	1.4521

Table 2. Polarisations at infinite dilution, molecular refractions, and apparent dipole moments.*

Borate	$\alpha \varepsilon_{1}$	$-\beta$	$-\gamma$	$\infty \mathrm{P}_{2}$ (c.c.)	$R_{\text {D }}$ (c.c.)	μ (D)
Trimethyl	0.52	0.689	$0 \cdot 120$	37.88	$24 \cdot 1_{1}$	$0 \cdot 8$
Triethyl	(0.38)	(0.706)	(0.092)	$50 \cdot 3{ }_{0}$	36.6 ${ }^{\text {r }}$	0.75
Tri-n-propyl	(0.23)	(0.837)	0.080	$65 \cdot 0$	$52.7{ }_{3}$	$0 \cdot 7{ }_{7}$
Tri-isopropyl	$0 \cdot 22$	0.834	0.067	$67 \cdot 57$	52.4 \%	$0 \cdot 8{ }_{6}$
Tri-n-butyl.	(0.16)	(0.843)	0.069	$78.7{ }_{7}$	$66.3{ }_{3}$	$0 \cdot 7$ \%
Tri-isobutyl	$0 \cdot 15$	0.834	0.060	80.98	$65 \cdot 98$	$0 \cdot 77$
Tri-s-butyl	(0.15)	(0.843)	(0.058)	$78.8{ }_{1}$	$66 \cdot{ }_{4}$	$0 \cdot 8$
Tripentyl	$0 \cdot 13$	0.897	0.044	94.74 ${ }_{4}$	$80 \cdot 3$	$0 \cdot 8{ }_{8}$
Tri-isopentyl	(0.12)	(0.894)	(0.045)	$94 \cdot 3{ }_{5}$	$80 \cdot 2$	$0 \cdot 8{ }_{1}$
Trihexyl	$0 \cdot 10$	0.861	0.040	$110 \cdot 5$	95.25	$0 \cdot 8{ }_{6}$
Trioctyl	$0 \cdot 09$	$0 \cdot 907$	0.032	139.4	121.2	$0 \cdot 97$
Trinonyl	0.06	0.905	0.025	$156 \cdot 5_{5}$	$139 \cdot 0$	$0 \cdot 93$

* Data in parentheses were calculated from ε, d, and n_{D} measurements given in ref. 3.
$b_{\mathrm{L}}^{\mathrm{CH}}=b_{\mathrm{T}}^{\mathrm{CH}}=b_{\mathrm{V}}^{\mathrm{CH}}=0.064 \times 10^{-23}$ c.c. (see refs. 6 and 12), may now be applied to trimethyl borate.

For this ester we have $R_{\mathrm{D}}=24 \cdot 11$ (Table 2), whence an estimate of $b_{1}+2 b_{3}$ is $2.72_{4} \times 10^{-23}$ c.c. For the flat arrangement of $\mathrm{B}(\mathrm{OMe})_{3}, b_{1}$ is the sum of the "vertical"
${ }^{12}$ Le Fèvre and Le Fèvre, J., 1956, 3549.
polarisabilities of the bonds involved, i.e., $b_{1}=0.909 \times 10^{-23}$ c.c., so that $b_{2}=b_{3}=$ 0.907×10^{-23} c.c. These differ somewhat from either of the sets shown in Table 3. If each of the $\mathrm{C}-\mathrm{O}$ bonds is inclined at an angle θ to a line perpendicular to the OOO triangle and passing through the boron atom, we have: $0.919=3 b_{\mathrm{V}}^{\mathrm{BO}}+9 b_{\mathrm{V}}^{\mathrm{CH}}+3\left(b_{\mathrm{L}}^{\mathrm{C}} \mathrm{C}^{-\mathrm{O}} \cos ^{2} \theta+\right.$ $b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}} \sin ^{2} \theta$), whence θ is $c a .74^{\circ}$, i.e., the three $\mathrm{O}-\mathrm{C}$ bonds are disposed towards the defined

Table 3. Molar Kerr constants at infinite dilution in carbon tetrachloride at $\mathbf{2 5}^{\circ}$, and principal polarisabilities derived therefrom.

Borate	$\infty\left({ }_{m} K_{2}\right) \times 10^{12}$	$\left(\theta_{1}+\theta_{2}\right) \times 10^{35}$	$10^{23} b_{1}{ }^{*}$	$10^{23} b_{2}{ }^{*}=b_{3}{ }^{*}$	$10^{23} b_{1} \dagger$	$10^{23} b_{2} \dagger=b_{3} \dagger$
Trimethyl	$1 \cdot 2$	$0 \cdot 2902$	0.919	0.903	0.993	0.866
Triethyl	1.78	$0 \cdot 4233$	1.398	1.370	1.489	1.324
Tri-n-propyl	$2 \cdot 5$	$0 \cdot 6065$	2.011	1.973	$2 \cdot 124$	1.916
Tri-isopropyl	$2 \cdot 5{ }_{4}$	$0 \cdot 6041$	1.996	1.965	$2 \cdot 111$	1.908
Tri-n-butyl ...	$3 \cdot 1{ }_{7}$	0.7539	2.529	$2 \cdot 482$	$2 \cdot 655$	$2 \cdot 419$
Tri-isobutyl...	3-15	$0 \cdot 7492$	2.516	$2 \cdot 469$	$2 \cdot 639$	$2 \cdot 407$
Tri-s-butyl ...	3.1 ${ }_{6}$	0.7515	2.528	$2 \cdot 489$	$2 \cdot 659$	$2 \cdot 423$
Tri-n-pentyl	$3 \cdot 8{ }_{4}$	0.9133	3.057	$3 \cdot 009$	3.199	2.938
Tri-isopentyl	$3 \cdot 8{ }_{4}$	$0 \cdot 9133$	3.054	3.003	3.194	2.933
Trihexyl	$4 \cdot 37$	1.0393	$3 \cdot 621$	$3 \cdot 569$	3.774	$3 \cdot 493$
Trioctyl	$5 \cdot 67$	1.3485	$4 \cdot 599$	$4 \cdot 546$	4.778	$4 \cdot 457$
Trinonyl	6.28	1-4936	$5 \cdot 276$	$5 \cdot 212$	$5 \cdot 462$	$5 \cdot 121$

* Calc. on assumption that resultant moments are as in Table 2; ${ }_{\mathrm{D}} P / \mathrm{E} P$ taken as $1 \cdot 1,{ }_{\mathrm{E}} P$ as $0.95 R_{\mathrm{D}}$.
\dagger Calc. on assumption that $\mu_{\text {resultant }}=0$, in which case ${ }_{\mathrm{D}} P=\infty P_{2}$.
line much as they would be towards a fourth bond if attached to a quadrivalent tetrahedral atom. The apparent moment may therefore be largely real, for if $\mu_{\mathrm{Me}-\mathrm{O}}$ is between 0.74 (ref. 4, p. 244) and 1.1 D (from ${ }^{13} \mu_{\mathrm{Me}_{3} \mathrm{O}}=1.25 \mathrm{D}$ and the $\mathrm{Me}-\mathrm{O}-\mathrm{Me}$ angle $=110^{\circ}$), $\mu_{\mathrm{B} \text { (OMe) })_{s}}$ should be between 0.61 and 0.91 D , to be compared with $\mu_{\text {expt. }}=0.82 \mathrm{D}$ listed in Table 2.

Because of the allocation ${ }^{11}$ of $C_{3 h}$ symmetry to trimethyl borate, only forms of comparable symmetry have been fully investigated. Others can be eliminated on dipole moment grounds, or by their ${ }_{m} K^{\prime} \mathrm{s}$; e.g., a structure in which one OMe link is above and two OMe links are below the BO_{3} plane to the maximum extents would have a μ of the order found but its ${ }_{\mathrm{m}} K$ calc. would be 10.8×10^{-12}, which is excessive.

A further point of interest from Table 3 is that, among the homologous normal esters, the differences per $3 \mathrm{CH}_{2}$ in b_{1} and in $b_{2}=b_{3}$ from one member to the next higher are roughly the same, lying about the mean value $0.54_{2} \times 10^{-23}$; this is close to the increment of polarisability to be expected $\left(0.53_{7} \times 10^{-23}\right.$ c.c. $)$ if, in passing from one homologue to the next, the new $\mathrm{C}-\mathrm{C}$ links are always added in such a way that their longitudinal polarisability semi-axes make approximately semi-tetrahedral angles with the principal polarisability directions in the molecule of the lower homologue.

The authors acknowledge with gratitude a gift of specimens of trialkyl borates from Borax Consolidated Limited, of London, obtained by the kind offices of Messrs. Swift and Company Limited, of Sydney.

[^0]: ${ }^{1}$ Lappert, Chem. Rev., 1956, 56, 959.

